Statistical convergence in non-archimedean Köthe sequence spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Köthe Sequence Spaces and Linear Logic

We present a category of locally convex topological vector spaces which is a model of propositional classical linear logic, based on the standard concept of Köthe sequence spaces. In this setting, the “of course” connective of linear logic has a quite simple structure of commutative Hopf algebra. The co-Kleisli category of this linear category is a cartesian closed category of entire mappings. ...

متن کامل

On statistical type convergence in uniform spaces

The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.

متن کامل

Statistical uniform convergence in $2$-normed spaces

 The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences  in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover,  we define the conce...

متن کامل

Gromov-Hausdorff convergence of non-Archimedean fuzzy metric spaces

We introduce the notion of the Gromov-Hausdorff fuzzy distance between two non-Archimedean fuzzy metric spaces (in the sense of Kramosil and Michalek). Basic properties involving convergence and the fuzzy version of the completeness theorem are presented. We show that the topological properties induced by the classic Gromov-Hausdorff distance on metric spaces can be deduced from our approach.

متن کامل

Some Sequence Spaces and Statistical Convergence

for sets of sequences x = (xk) which are strongly (V ,λ)-summable to L, that is, xk → L[V,λ]. We recall that a modulus f is a function from [0,∞) to [0,∞) such that (i) f(x)= 0 if and only if x = 0; (ii) f(x+y)≤ f(x)+f(y) for all x, y ≥ 0; (iii) f is increasing; (iv) f is continuous from the right at 0. It follows that f must be continuous on [0,∞). A modulus may be bounded or unbounded. Maddox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics and Computer Science

سال: 2020

ISSN: 2008-949X

DOI: 10.22436/jmcs.023.02.01